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For a translation invariant Gibbs measure n on the configuration space X of
a lattice finite spin system, we consider the set Xn of generic points. Using a
Breiman type convergence theorem on the set Xm of generic points of an
arbitrary translation invariant probability measure m on X, we evaluate the
Hausdorff dimension of the set Xn with respect to any metric out of a wide class
of ‘‘scale’’ metrics on X (including Billingsley metrics generated by Gibbs
measures).
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1. INTRODUCTION

Let (X, l) be a compact metric space, y an action of the group Zd or one of
its subsemigroups by continuous transformations of X, and m a y-invariant
Borel probability measure on X. A point x ¥X is called generic with
respect to m or, shortly, m-generic if the averages of each continuous func-
tion f: XQ R over increasing pieces of the y-orbit of x converge to the
mean value > f dm. It is the generic points that provide the stability of time
averages, consistency of statistical estimators, and the existence of specific
characteristics describing the ‘‘macro’’ properties of systems in statistical
physics. It is clear that one may be interested in evaluation of the ‘‘size’’ of
the set Xm consisting of all m-generic points.
According to the individual ergodic theorem, m(Xm)=1 if m is ergodic,

i.e., in this case, Xm is ‘‘comparable’’ with the whole space X. On the other



hand, if m is non-ergodic, m(Xm)=0.3 In the latter case Xm is ‘‘comparable’’

3 Indeed, if {ma} is the ergodic decomposition of m, for each a there is a continuous function
fa with > fa dma ] > fa dm; hence Xm 5 1a Xma=”. Since ma(Xma )=1 for all a, we have
m(1a Xma )=1 and hence m(Xm)=0.

with the empty set. Although a statistician may be satisfied with this rather
restricted information, a more refined description of this set is of significant
interest. Since X is a metric space it is natural to evaluate some metric
characteristics of Xm, in particular, its Hausdorff dimension.
In the case where X is a sequence space, y consists of translations, and

l is the Billingsley metric (see Section 2) specified by a y-invariant Markov
measure n, an impressive study of the Hausdorff dimension Dl(Xm) of Xm
(and some more general sets) was performed by Cajar. (1) He proved that
Dl(Xm)=h(m)/h(n, m), where h(m) is the entropy of m and h(n, m) is an
entropy type joint characteristic of m and n. More recently Olivier (9) has
extended this result to Billingsley metrics specified by invariant g-measures.
In this paper we assume that S is a finite set, T is a subsemigroup of

Zd (one can think of T as Zd or Zd+), X
(T)=ST={x: TQ S} is the space of

S-valued configurations on T endowed with a ‘‘scale metric’’ defined in
ref. 15 (see Section 3 below), and y=y (T) is the semigroup of all transla-
tions on X (T). We study the Hausdorff dimension of the set X (T)m of
m-generic points, where m is the natural projection to X (T) of a Gibbs
measure defined on X (Z

d).
To be more specific we start with the following definition. Let T=

{Tn} be a sequence of finite subsets of T and m a Borel probability measure
on X. We say that a point x ¥X (T) is m-generic with respect to T if for any
function f ¥ C(X(T)) we have

lim
nQ.
|Tn |−1 C

t ¥ Tn

f(ytx)=F f dm (1.1)

(we denote by |A| the cardinality of a set A … Zd ). This definition deter-
mines the set X (T)m =X

(T)
m (T) of all m-generic points (with respect to T )

studied in the paper.
We study the Hausdorff dimension of the set X (T)m with respect to

metrics out of a wide class containing Billingsley metrics specified by Gibbs
measures. For a Gibbs measure m we prove that Dl(X

(T)
m )=h(m)/o where

h(m) is the entropy of m and o is a parameter specified by the metric l.
We want to stress that m is not assumed to be ergodic. Our result

implies that for a given metric l the dimension Dl(X
(T)
m ) is the same for all

Gibbs measures m with the same entropy, whereas m(Xm)=1 if m is ergodic
and m(Xm)=0 if m is not ergodic. For example, this is the case for the two-
dimensional Ising ferromagnet at zero external field: in this model for a

1282 Gurevich and Tempelman



sufficiently low temperature there is an infinite family of (translation
invariant) Gibbs measures; for two of them m(Xm)=1, for all the others
m(Xm)=0, but the dimension Dl(X

(T)
m ) is the same for all of them. (We are

indebted to the referee for calling our attention to this corollary).
The paper is organized as follows. In Section 2 we provide the infor-

mation used in the subsequent proofs. We, in particular, state, for d \ 1,
a refined version of Breiman’s theorem for generic points of Gibbs measures;
this result, apparently being of some interest by itself, will be one of our
main tools in the sequel. We also give some important examples of ‘‘stable
scale metrics’’ with respect to which the dimension Dl(X

(T)
m ) is evaluated.

Our main results are stated and partially proved in Section 3. If m is not
ergodic the evaluation of Dl(X

(T)
m ) is based on employing an auxiliary

measure m̃ constructed in Section 4.
The following notation is used throughout the paper:F (T) denotes the

set of all finite subsets of T; P (T) is the set of Borel probability measures
on X (T); I (T) the set of y-invariant measures in P (T); E (T) the set of ergodic
measures in I (T). For any A … T and x ¥X (T) we denote by xA the restric-
tion of x to A. The set C (T)V (x)={y: y ¥X

(T), yV=xV} where V … T is
called the cylinder with support V; we denote by C (T)V the set of all such
cylinders. If {An} is a specified sequence, Cn(x) denotes the cylinder CV(x)
when V=An. We write X̂, F̂, P̂, etc., when T=Zd. We denote by Ĝ the
set of all y-invariant Gibbs measures on X̂=X(Z

d) and by Ĝ(U) the set of
measures in Ĝ corresponding to a specific potential U. The projections of
these sets to X (T) will be denoted by G (T) and G (T)(U), respectively. We
shall often drop the index T as well as the hat if there is no danger of
confusion.
If A, B … Zd and t ¥ Zd we set Ā=Zd0A, A−B={s : s=a−b, a ¥ A,

b ¥ B}, t+A={s : s=t+a, a ¥ A}.
Some results of this paper were announced in ref. 7.

2. AUXILIARY RESULTS

2.1. Refined Breiman Type Theorems

Unless the contrary is stated, in this subsection we put T=Zd and
drop the hat in the notation. Let A={An} be a sequence of finite subsets
of Zd. A is called a van Hove sequence if limnQ. |An |−1 |An D(t+An)|=0
for each t ¥ Zd. Denote: A −n=1k [ n An. A is called a regular sequence if
there is a constantM such that |A −n−An | [M|An |, n=1, 2,... .
We fix a y-invariant potential U and consider the pressure P(U) and

the set G(U) of Gibbs measures corresponding to U (see, e.g., refs. 4
and 11). In refs. 3, 12, and 13 (see also ref. 14, Theorems 8.3.1 and 8.7.3)
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pointwise convergence theorems related to the specific entropy have been
proved (see Theorem 2.2 below). Using the same approach as in ref. 13,
one can obtain the following refined version of these theorems (Theorem
2.1 below). Denote

j(x)=jU(x)= C
B ¥F : 0 ¥ B

|B|−1 U(B, x), x ¥X,

and for any m ¥I consider the mean energy em(U) :=Emj. The function j
is clearly continuous on X. Let

Xj, m=3x ¥X : lim
nQ.
|An |−1 C

t ¥ An

j(ytx)=Emj4 .

Theorem 2.1. Let A be a van Hove sequence. If m ¥I, n ¥ G(U)
then

(a) for any x ¥Xj, m there is the limit

lim
nQ.
[− |An |−1 ln n(Cn(x))]=: h(n, m);

(b) h(n, m)=em(U)+P(U).

The proof of this theorem will be published elsewhere.

Remark 2.1. By the variational principle (see refs. 4 and 11) h(n, m)
=h(n) if m=n.

Theorem 2.1 implies the following statement (see refs. 3, 12–14).

Theorem 2.2. Let {An} be a regular van Hove sequence. If n ¥ G,
m ¥ E then

lim
nQ.
[− |An |−1 ln n(Cn(x))]=h(n, m), m−a.e.

Let T be a semigroup in Zd. Now we are interested in van Hove
sequences {An} with An … T, n=1, 2,...; we will say that such sequences are
van Hove in T. We say that T is a massive subsemigroup of Zd if for any
F ¥ F̂ there is a vector t ¥ Zd such that F+t … T. It is easy to verify that a
subsemigroup is massive if and only if it contains at least one van Hove
sequence.
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Let T be a massive semigroup in Zd and A={An} a van Hove
sequence in T. If m ¥I (T), we denote its (unique) y-invariant extension to X̂
by m̂. It is easy to check that if x ¥X (T)m (A) then each extension x̂ of x to
Zd belongs to X̂m̂(A). Besides, m̂(Ĉn(x̂))=m(C

(T)
n (x)). Recall thatm ¥ G (T)(U)

means, by definition, m̂ ¥ Ĝ(U). These remarks bring us to the following
corollary of Theorems 2.1 and 2.2.

Corollary 2.1. (a) If A is a van Hove sequence and m ¥I (T), n ¥
G (T)(U), then for every x ¥X (T)m (A)

lim
nQ.
[− |An |−1 ln n(C

(T)
n (x))]=em̂(U)+P(U)=h(n̂, m̂). (2.1)

(b) If A is a regular van Hove sequence and m ¥ E (T), then (2.1)
holds m-a.e.

2.2. Scale Metrics and Evaluation of the Hausdorff Dimension

Let X=ST, where S is finite and T is infinite countable. The notion of
a scale metric on X was introduced in ref. 15 (see also refs. 5–7). By defini-
tion, every scale metric is in some sense compatible with a scale sequence a
defined as follows. Let A={An} be a sequence of finite subsets of T such
that An ‘ T and limnQ. |An+1 |/|An |=1. A sequence a={an, n \ 1} of
functions an: XQ R is called a scale sequence if

(A) an(x) > 0 and an(x) a 0 for every x ¥X;
(B) an(x) is constant on every cylinder Cn(x)={y: y ¥X, yAn=xAn},

x ¥X.

Let W ˜X. We say that a scale sequence a is stable on W (or
W-stable)4 if for each x ¥W the following limit exists and is a positive

4 In ref. 15 another term was used instead of ‘‘stability.’’

constant onW:

lim
nQ.
[− |An |−1 ln an(x)]=: o(W), x ¥W. (2.2)

Example 2.1. If 0 < h < 1 and an(x) — h |An| then the functions an
form an X-stable scale sequence with o(X)=−ln h.

Instead of repeating here the definition of a scale metric compatible
with a scale sequence a (every such a metric is called an a-metric, and it is
called W-stable if a is W-stable) we give some important examples of scale
metrics.
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Example 2.2 (Standard a-Metrics). With each scale sequence a=
{an} a standard a-metric la can be associated in the following way: for any
x, y ¥X, x ] y, weput n(x, y)=min{n : xAn ] yAn}; then la(x, y)=1 if n(x, y)
=1, and la(x, y)=an(x, y)−1(x) otherwise. It is evident that diam(Cn(x))
=an(x) and l(x, y) > an(x) if y ¨ Cn(x).

Example 2.3 (Billingsley Metrics). Let U be a potential and
n ¥ G(U); then a :={n(Cn(x))} is a scale sequence. The standard a-metric
(we denote it by ln) is called the Billingsley metric associated with n; in
other words, if x ] y then ln(x, y)=n(Cn(x, y)−1(x)). If A is a van Hove
sequence then, for any measure m ¥I, ln is Xj, m-stable with o(Xj, m)=
h(n, m) where j(x)=jU(x) is defined in Subsection 2.1. The Hausdorff
dimension with respect to ln is often called the Billingsley dimension with
respect to n.

Example 2.4 (Potential Metrics). These are a-metrics with an(x)=
exp[−En(x)], where En(x) is the energy (corresponding to a potential U)
of the configuration x in the ‘‘vessel’’ An (see ref. 5 for details). A potential
metric l is Xj, m-stable and o(Xj, m)=em(U) for any m ¥I (here j=jU, see
before). A particular case of such a metric (for T=Z+, An=[0, n−1]
5 T) is well known: it corresponds to a one-particle potential U(s) —
− ln h > 0, s ¥ S (the zero interaction), and is the standard a-metric (see
Example 2.2) with an(x) — hn.

Let a be a scale sequence and l an a-metric. With any measure m ¥P

one can associate the upper and lower local dimensions as follows:

d̄l, m(x) :=lim sup
nQ.

ln m(Cn(x))
ln an(x)

; d
¯ l, m
(x) :=lim inf

nQ.

ln m(Cn(x))
ln an(x)

, x ¥X.

The following Billingsley type theorem presents a convenient tool for
evaluation of the Hausdorff dimension with respect to a scale metric; it is a
generalization of Theorem 1.6 in ref. 15 and can be proved similarly. Recall
that Dl(F) is the Hausdorff dimension of a set F ˜X with respect to l.

Theorem 2.3. Let F ˜X, d̄, d
¯
be constants, m ¥P and let mg be the

corresponding outer measure.

(1) If d̄l, m(x) [ d̄ for all x ¥ F, then Dl(F) [ d̄.

(2) If l is F-stable, mg(F) > 0 and d
¯ l, m
(x) \ d

¯
for all x ¥ F, then

Dl(F) \ d¯
.
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2.3. Two Properties of Gibbs Measures

It is known (see (16.38) in ref. 4 and references therein) that for any
potential U and any n ¥ Ĝ(U) there exists a sequence of ergodic measures
ni ¥ Ĝ(Ui) such that ni weakly converges to n and ||Ui−U||Q 0. This implies
that P(Ui)Q P(U), eni (Ui)Q en(U) and hence, due to the variational prin-
ciple, h(ni)Q h(n). Let now T be a massive semigroup and m ¥ G (T)(U).
Then m̂, the invariant extension of m to X̂, belongs to Ĝ(U) and
h(m)=h(m̂). The following simple corollary of these facts plays a crucial
role in Section 4.

Theorem 2.4. For each m ¥ G (T) there exists a sequence of measures
mi ¥ G (T) 5 E (T) such that mi weakly converges to m and h(mi)Q h(m).

The next assertion is also used in Section 4. It can be easily deduced
from the definition of a Gibbs measure (cf. the proof of Theorem 8.7.3 in
ref. 14).

Theorem 2.5. Let m ¥ G (T) and {An} a van Hove sequence in T.
There is a sequence of non-negative numbers un Q 0 such that if C ¥ C (T)An ,
V ¥F(T), V … T0An, CŒ ¥ C (T)V , then

m(C) m(C −) e−un |An| [ m(C 5 C −) [ m(C) m(C −) eun |An|, n ¥N.

3. MAIN RESULTS: HAUSDORFF DIMENSION OF Xm

Let T be a semigroup in Zd and X=X(T); in this section we drop the
index (T) unless the contrary is stated. We assume now that T is a massive
semigroup. Let T={Tn} be a regular van Hove sequence in T, 1n Tn=T,
and let Xm=Xm(T) denote the set of m-generic points with respect to
this sequence. In what follows A={An} is a subsequence of T, An ‘ T,
limnQ. |An+1 |/|An |=1, and l is an Xm-stable scale metric (with respect
to A). Recall that if m ¥I we denote by m̂ the y-invariant extension of m
to X̂ and that m̂ ¥ Ĝ(U) if m ¥ G(U).

Theorem 3.1. If U is a potential and m ¥ E 5 G(U) then

Dl(Xm)=
h(m)
o(Xm)

=
em̂(U)+P(U)
o(Xm)

. (3.1)

This is a simple corollary of Theorems 2.1 and 2.3 and the obvious
inclusion Xm …Xj, m (see Subsection 2.1)
When m is not ergodic (and hence m(Xm)=0) the evaluation of Dl(Xm)

is an essentially more challenging problem. Nevertheless an upper bound
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can be readily deduced from Theorem 2.3 just in the same way as the
previous theorem.

Theorem 3.2. If U is a potential and m ¥ G(U) then

Dl(Xm) [
h(m)
o(Xm)

=
em̂(U)+P(U)
o(Xm)

. (3.2)

But the lower estimate cannot be obtained from Theorem 2.3 in such a
straightforward way as the upper one. Because of this we shall construct
another probability measure m̂ concentrated on Xm (but, in general, not
invariant anymore) to which this theorem can be applied. However, unlike
in the case d=1, we have to restrict our study to Gibbs measures because
just for such measures the desired construction is available.
For the sake of simplicity we shall consider only one massive semi-

group T … Zd, namely T=Zd+ (see also Remark 3.1).
With any s=(s1,..., sd) ¥ Zd+ we associate the parallelepiped P=P(s)

=<d
i=1 [0, s

i−1] 5 Zd and denote: l
¯
(P)=mini s i, l̄(P)=maxi s i. Let Par

be the set all such parallelepipeds. A sequence {Tn} of parallelepipeds in
Par is van Hove if and only if l

¯
(Tn)Q..

Let 1 [ c <.. We denote by Par(c) the family of all parallelepipeds
P ¥ Par such that l̄(P)/l

¯
(P) [ c. A sequence of parallelepipeds {Tn} is

regular if and only if {Tn} … Par(c) for some c.
In the next section we prove the following lemma that plays a crucial

role in the evaluation of the desired lower bound for the Hausdorff dimen-
sion Dl(Xm).

Lemma 3.1. Let T={Tn} be a regular van Hove sequence of par-
allelepipeds in Par. Then for any measure m ¥ G there exists a measure
m̃ ¥P concentrated on Xm and such that for all x ¥Xm

lim inf
nQ.

[− |Tn |−1 ln m̃(Cn(x))] \ h(m). (3.3)

This lemma and Theorem 2.3 bring us immediately to the following
statement.

Theorem 3.3. Let U be a potential, m ¥ G(U); let T={Tn} be as in
Lemma 3.1, A={An} a subsequence of T, An ‘ T, and l a Xm-stable scale
metric (with respect toA). Then

Dl(Xm) \
h(m)
o(Xm)

=
em̂(U)+P(U)
o(Xm)

.
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Theorems 3.2 and 3.3 imply our main result.

Theorem 3.4. Formula (3.1) holds under the conditions of
Theorem 3.3.

Remark 3.1. Let us define a class of sub-semigroups of Zd including
Nd, Zd+, and Z

d. For any i=1,..., d we put ei=(e
1
i ,..., e

d
i ) where e

i
i=1 and

e ji=0 if j ] i (i, j=1,..., d). We fix a vector c=(c1,..., cd) ¥ Zd+ and two
sets, I, J … {1,..., d}, such that I 2 J={1,..., d}, and say that T is an axial
semigroup in Zd specified by c and I, J if it consists of all vectors of the
form ; i ¥ I (a i+c i) ei−; j ¥ J (b j+c j) ej where a i, b j ¥ Z+. It is easy to check
that any axial semigroup is massive. Theorem 3.4 can be easily extended to
such a semigroup (it is quite possible that it can be extended also to all
massive semigroups).

4. PROOF OF LEMMA 3.1

We use the notation introduced in Sections 1–3; in particular, {Tn} is a
fixed sequence in T=Zd+ consisting of parallelepipeds Tn ¥ Par(c) such that
limnQ. l¯

(Tn)=. (since no subsemigroups of Zd different from T=Zd+ will
appear, we drop the upper index (T) in the notation).
For any vector t=(t1,..., td) ¥ Zd with tk \ 1, k=1,..., d, we set

P(t)=P(t1,..., td)=Zd 5 D
d

k=1
[0, tk−1].

In particular, Tn=P(tn) for some t ¥ T, n=1, 2,... .
We introduce a metric r on P by the formula

r(n, nŒ)=C
.

n=1

1
2n
max
C ¥ CK(n)

|n(C)− nŒ(C)|, n, nŒ ¥P, (4.1)

where CK(n) is the set of cylinders with support K(n)=[0, n−1]d 5 Zd (this
metric for d=1 was used in ref. 1). It is easy to see that the convergence in
the metric space (P, r) is equivalent to the weak convergence of measures.
One can also check that for any probability vector p=(p1,..., pk) and any
measures nj, n

−

j ¥P, j=1,..., k, we have

r 1 C
k

j=1
pjnj, C

k

j=1
pjn

−

j
2 [ C

k

j=1
pjr(nj, n

−

j). (4.2)
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The subsequent reasoning is divided into several steps.

1. Construction of the Measure m̃. We choose four sequences of
positive numbers, ci, ei, gi, li (i=1, 2,...), such that li, 1/gi ¥ Z and

(a) lim
iQ.
ci=lim

iQ.
gi=0, (b) C

.

i=1
ei <., (c) lim

iQ.
li=., (4.3)

2
gi

[
1
li+1
1 ei
ci
21/d, i=1, 2,... . (4.4)

To make sure that such sequences do exist it suffices to set

ci=1/2did+3, ei=1/i2, gi=1/i, li=[i1/2d]−1.

For each x ¥X we denote by dx the probability measure on X concen-
trated at the point x and let

dxV=
1
|V|

C
t ¥ V
dytx, x ¥X, V ¥F. (4.5)

Since m ¥ G, there is a sequence of ergodic measures mi ¥ G (i \ 0) such that

lim
iQ.
r(mi, m)=0, lim

iQ.
h(mi)=h(m) (4.6)

(see Theorem 2.4).
From the pointwise ergodic theorem (see Theorem 6.3.1 in ref. 14)

related to averaging over parallelepipeds and the Egorov theorem one can
easily deduce the following: for every i \ 1 there exist a Borel set Mi …X
and a positive integer mi such that

mi(Mi) \ 1− ci (4.7)

and for all x ¥Mi and all P ¥ Par(c) with l
¯
(P) \ mi (recall that l¯

(P) is the
minimal edge of P) we have

r(dxP, mi) [ gi, (4.8)

: 1
|P|
ln mi(CP(x))+h(mi) : [ gi. (4.9)

According to Theorem 2.5 for every i there is a sequence u (i)n Q 0
(nQ.) such that

mi(CK(n)(x) 5 CV(x)) [ mi(CK(n)(x)) mi(CV(x)) exp(u (i)n · |K(n)|), (4.10)
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whenever V ¥F, V … T0K(n). Therefore, we can find a number bi such
that n \ bi implies u

(i)
n [ gi (i=1, 2,...). We set k1=max{m1, b1} and

choose a sequences of positive integers ki such that for all i \ 1

ki+1 >max 3mi+1, bi+1, ki+1,
2kigi+1
g2i

,
2ki(li+1) gi+1

gi
4 . (4.11)

We also set

ri=2ki/gi. (4.12)

From (4.3), (4.11), and (4.12) it follows that

ri/ri+1 [ gi, lim
iQ.
ki=lim

iQ.
ri+1/ri=.. (4.13)

Denote by ri the vector in Zd with all coordinates equal to ri. For every
vector u=(u1,..., ud) we set ū=maxk uk, u¯

=mink uk.
Let

Di=K((li+1) ri)0K(ri), Li=Di 5 kiZd, i \ 1. (4.14)

Clearly,

|Li | [ 1
(li+1) ri
ki
2d=12(li+1)

gi
2d. (4.15)

For eachM …X and V ¥F we denote

MV=0
x ¥M
CV(x).

Let now

M̃i=3
t ¥ Li

(y−tMi)t+K(ri+1 − t̄), (4.16)

M̃=lim inf
iQ.

M̃i=0
j
3
i \ j
M̃i. (4.17)

We determine the measure m̃ (see the statement of Lemma 3.1) by the
following requirements:

(a) at every cylinder C with support K(ri+1)0K(ri) (i=0, 1,...,
where we let K(r0)=”) the measures m̃ and mi coincide;
(b) the cylinders mentioned in (a) and corresponding to different i’s

are m̃-independent.
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2. Estimation of m̃(M̃). We shall prove that m̃(M̃)=1. By the
Borel–Cantelli Lemma it suffices to check that

C
i
(1− m̃(M̃i)) <. (4.18)

(see (4.17)). By (4.16) for all i \ 1 the set M̃i is a union of cylinders with
support K(ri+1)0K(ri), so the definition of m̃ implies that m̃(M̃i)=mi(M̃i).
Due to (4.7) and the y-invariance of mi we have

1−mi(M̃i) [ 1−mi 13
t ¥ Li

y−tMi
2

[ C
t ¥ Li

(1−mi(y−tMi))= C
t ¥ Li

(1−mi(Mi)) [ ci |Li |.

Therefore (see (4.15))

1− m̃(M̃i)=1−mi(M̃i) [ ci 1
2(li+1)
gi
2d,

and from (4.4) we obtain 1−mi(M̃i) [ ei, which together with (4.3) leads
to (4.18).

3. Auxiliary Statements. We are going to prove that M̃ …Xm and
hence m̃ is concentrated on Xm. Since the convergence in the metric space
(P, r) is the weak convergence of measures, it suffices to show that for
every x ¥ M̃

lim
nQ.
r(dxTn , m)=0,

where dxTn is the ‘‘empirical measure’’ defined according to (4.5). We start
with a general statement.

Lemma 4.1. Let x, y ¥X and P=P(s) be a parallelepiped with
s=(s1,..., sd) ¥ Zd+, s¯

> 2. Assume that x(t)=y(t) for any t ¥K(s̄). Then
r(dxP, d

y
P) [ 2d/s¯

.

Proof. If j [ s̄ and C ¥ CK(j) then |d
x
P(C)−d

y
P(C)|=0 for j=1 and

|dxP(C)−d
y
P(C)| [ |P|

−1 (|P|− |P(s1−j+1,..., sd−j+1)|) for j > 1.
(4.19)
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Let ak > 0, 0 [ ck [ 1 (k=1,..., d), and 0 [ b [mink ak. The simple-to-
prove inequalities

1−D
d

k=1
(1−ck) [ 1−(1− c̄)d [ d max

k
ck

with ck=b/ak imply

1D
d

k=1
ak 2

−1 1D
d

k=1
ak−D

d

k=1
(ak−b)2 [

db
mink ak

. (4.20)

By (4.20) we can change the right-hand side of (4.19) for dj/s
¯
and obtain

(see (4.1))

r(dxP, d
y
P) [ C

s̄

j=2

dj
2 js
¯
+
1
2 s¯

[
d
s
¯

C
.

j=2

j
2 j
+
1
2 s¯
=
2d
s
¯
. L

In the sequel we shall repeatedly use the following simple fact: if
V=dk

j=1 Vj, Vj ¥F, then

dxV=C
k

j=1

|Vj |
|V|
dxVj , x ¥X. (4.21)

Lemma 4.2. Let Pi ¥ Par(c), ti ¥ Li (see (4.14)), ti+Pi …K(ri+1),
and l
¯
(Pi)Q. as iQ.. Then for every x ¥ M̃

lim
iQ.
r(dxt i+Pi , m)=0, (4.22)

lim inf
iQ.

5− ln mi(Ct i+Pi (x))
|Pi |
6 \ h(m). (4.23)

Proof. By (4.16), (4.17) x ¥ M̃i if i is sufficiently large. For such an
i and any t ¥ Li there is a point y=yx, i, t ¥ y−tMi such that x(s)=y(s) for
all s ¥ t+K(ri+1−t̄). It follows that yt y ¥Mi and (ytx)(s)=(yt y)(s) for all
s ¥K(ri+1−ri) (see (4.16), (4.17)). In our case we take y=yx, i, t i and note
that x(s)=y(s) for all s ¥ ti+K(l̄(Pi)). Besides, d

x
t i+Pi=d

yti
x

Pi
, dyt i+Pi=d

yti
y

Pi
.

Using this fact together with the triangle inequality, we obtain

r(dxt i+Pi , m) [ r(d
x
t i+Pi , d

y
t i+Pi )+r(d

y
t i+Pi , mi)+r(mi, m)

=r(dyti x
Pi
, dyti y
Pi
)+r(dyti y

Pi
, mi)+r(mi, m). (4.24)

Hausdorff Dimension of Sets of Generic Points for Gibbs Measures 1293



To estimate the first and the second terms on the right-hand side of (4.24)
we can apply Lemma 4.1 with P=Pi, x=yt i y and inequality (4.8) with
P=Pi, respectively. This gives

r(dxt i+Pi , m) [ 2d/l¯
(Pi)+gi+r(mi, m), (4.25)

and we come to (4.22) (see (4.3), (4.6)).
In order to prove (4.23) let us note that Ct i+Pi (x)=Ct i+Pi (y) where

y=yx, i, t i . Therefore, in view of the y-invariance of mi and (4.9),

ln mi(Ct i+Pi (x))
|Pi |

=
ln mi(Ct i+Pi (y))

|Pi |
=
ln mi(CPi (yt i y))

|Pi |
[ −h(mi)+gi.

Since gi Q 0 we obtain (4.23). L

The following obvious corollary will be more convenient for refer-
ences.

Corollary 4.1. If {i(n)} is an N-valued sequence such that i(n)Q.
as nQ., and if ti(n) and Pi(n) are defined as in Lemma 4.2, then for every
x ¥ M̃

lim
nQ.
r(dxt i(n)+Pi(n) , m)=0, lim inf

nQ.

5− ln mi(n)(Ct i(n)+Pi(n) (x))
|Pi(n) |

6 \ h(m).

Lemma 4.3. Let

Li … Li, L
−

i=0
t ¥ L i

(t+K(ki)), i=1, 2,... (4.26)

Then for every x ¥ M̃

lim
iQ.
r(dxLiŒ, m)=0, (4.27)

lim inf
iQ.

5− ln mi(CLiŒ(x))
|L −i |
6 \ h(m). (4.28)

Proof. By (4.21) and (4.2)

r(dxLiŒ, m) [ C
t ¥ L i

|t+K(ki)|
|L −i |

r(dxt+K(ki), m).
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Note that in the proof of inequality (4.25) we have used only that ti ¥ Li,
Pi ¥ Par(c), and ti+Pi …K(ri+1). Hence this inequality will be still valid if
we replace therein ti by any t ¥ Li and Pi by K(ki). This enables us to
estimate r(dxt+K(ki), m) and obtain

r(dxLiŒ, m) [ C
t ¥ L i

|t+K(ki)|
|L −i |
12d
ki
+gi+r(mi, m)2=2d/ki+gi+r(mi, m).

Now (4.13), (4.3), and (4.6) together lead to (4.27).
To prove (4.28) we note that due to (4.10)

mi(CLŒ(x))=mi 1 3
t ¥ L i

Ct+K(ki)(x)2 [ exp(u (i)ki · |L −i |) D
t ¥ L i

mi(Ct+K(ki)(x)).

Then, using the points y=yx, i, t introduced in the proof of Lemma 4.2 and
the y-invariance of mi, we obtain

−
ln mi(Cn(x))
|L −i |

\
|K(ki)|
|L −i |

C
t ¥ L i

5− ln mi(Ct+K(ki)(y))
|K(ki)|

6−u (i)ki

=
|K(ki)|
|L −i |

C
t ¥ L i

5− ln mi(CK(ki)(yty))
|K(ki)|

6−u (i)ki .

It remains to recall that u (i)ki [ gi (see the definition of ki) and to employ
(4.9). L

As before, for straightforward applications, we state the following
corollary.

Corollary 4.2. If i(n) is as in Corollary 4.2 and L −i(n) is defined in
(4.26), then for every x ¥ M̃

lim
nQ.
r(dxL Œi(n) , m)=0, lim inf

nQ.

5− ln mi(n)(CL Œi(n) (x))
|L −i(n) |
6 \ h(m).

4. The Inclusion M̃ … Xm. For every n there is a unique i=i(n) such
that ri [ t¯ n

< ri+1. It is evident that i(n)Q. together with n. Since
t̄n/t¯ n

[ c and ri+1/ri Q. as iQ. (see (4.13)), if n is large enough there
are only three possibilities: (A) ri [ t¯ n

[ t̄n < (li+1) ri, (B) (li+1) ri [
t̄n < ri+1, (C) ri [ t¯ n

< ri+1 [ t̄n < ri+2.
We can decompose the sequence {Tn} into three subsequences each

corresponding to those n that satisfy conditions (A), (B), and (C), respec-
tively. It suffices to prove that dxTn Q m along each of these subsequences
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Fig. 1. Location of Tn (type A).

whenever x ¥ M̃. Therefore, we can assume without loss of generality that
one of conditions (A), (B), (C) is satisfied for all n, and thereby consider
the sequences of the three types separately.

Sequences of Type A (See Fig. 1). Let i=i(n) and

Ln, i={t ¥ Li : t+K(ki) … Tn}, L −n, i= 0
t ¥ Ln, i

(t+K(ki)). (4.29)

We represent Tn in the form Tn=T
(1)
n c T (2)n c T (3)n , where

T (1)n =ri−1+K(ri−ri−1), T (2)n =L
−

n, i, T (3)n =Tn 0(T
(1)
n 2 T (2)n ).

From (4.21), (4.2) it follows that

r(dxTn , m) [
|ri−1+K(ri−ri−1)|

|Tn |
·r(dxri−1+K(ri −ri−1), m)

+
|L −n, i |
|Tn |
·r(dxLŒn, i , m)+

|T (3)n |
|Tn |
·r(dxT(3)n , m), x ¥ M̃. (4.30)

Note that all factors on the right side of (4.30) are bounded. We can apply
Corollary 4.1 with ti(n)=ri(n)−1,Pi(n)=K(ri(n)−ri(n)−1) to make sure that
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the first term of this sum tends to 0 as iQ., and Corollary 4.2 with
L −i(n)=L

−

n, i(n) to prove the same for the second term (note that, for a
sequence of type (A), the relations t ¥ Li(n), t+K(ki(n)) … Tn imply t+
K(ki(n)) … Di(n)). The third term tends to 0 because

|T (3)n |
|Tn |
=
|K(ri)|− |K(ri−ri−1)|

|Tn |
+
|Tn |− |K(ri)|− |L

−

n, i |
|Tn |

[
rdi −(ri−ri−1)

d

rdi
+
4d(t̄n)d−1 ki
t̄nt¯
d−1
n

[
dri−1
ri
+
4dcd−1ki
ri

[ dgi+4dcd−1gi

(the last inequality follows from (4.13) and (4.12)). Thus, for a sequence
{Tn} of type A, r(d

x
Tn , m)Q 0 as nQ..

Sequences of Type B (See Fig. 2). We first remind that Tn=P(tn).
Using the fact that ri+P(tn− ri) … Tn and taking into account (4.2), (4.5),
we obtain

r(dxTn , m) [
|ri+P(tn− ri)|

|Tn |
r(dxri+P(tn − ri), m)

+
|Tn 0(ri+P(tn− ri)|

|Tn |
r(dxTn 0(ri+P(tn − ri)), m), x ¥ M̃. (4.31)

Fig. 2. Location of Tn (type B).
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If n (and hence i) is large enough then

t̄n−ri
t
¯ n
−ri
=
t̄n(1−ri/t̄n)
t
¯ n
(1−ri/t¯ n

)
[
c(1−ri/t̄n)
1−ri/t¯ n

[
c

1−ri/t¯ n
[

c
1−cri/t̄n

[
c

1−c(li+1)
[ 2c,

(see conditions (A) and (4.3)) so thatP(tn− ri) ¥ Par(2c). Now Corollary 4.1
shows that the first term on the right side of (4.31) tends to 0 as nQ..
Furthermore, by (4.20)

|Tn |− |P(tn− ri)|
|Tn |

[
dri
t
¯ n

[
cdri
t̄n

[
cdri
ri(li+1)

=
cd
li+1

, (4.32)

where li Q. (see (4.3)). Therefore r(d
x
Tn , m)Q 0 for sequences of type B.

Sequences of Type C (See Fig. 3). For such a sequence we have

r(dxTn , m) [
|Tn 5K(ri+1)|

|Tn |
·r(dxTn 5K(ri+1), m)

+
|Tn 5 (K(ri+2)0K(ri+1))|

|Tn |
·r(dxTn 5 (K(ri+2)0K(ri+1)), m), x ¥ M̂.

(4.33)

Fig. 3. Location of Tn (type C).
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The set Tn 5K(ri+1) is clearly a parallelepiped in Par(c), and {Tn 5
K(ri+1)} is a sequence of type B (recall that i=i(n)). Hence, as has been
already proved, the first term on the right side of (4.31) tends to 0 as
nQ.. At the same time our assumption t̄n [ ct¯ n

[ cri+1 combined with
(4.3) implies that for n large enough

Tn 5 (K(ri+2)0K(ri+1)) … Di+1

(see (4.14)), and we can prove that the second term tends to 0 as we did
when dealing with sequences of type A.
Our final conclusion is: if x ¥ M̃ then r(dxTn , m)Q 0 as nQ. for a

sequence {Tn} of any type and hence for any sequence in Par(c). It means
that M̃ ¥Xm and, since m̃(M̃)=1, we see that m̃(Xm)=1.

5. The behavior of ln m̃(Cn(x)). As before, it suffices to prove (3.3)
for sequences of types A – C separately. If {Tn} is of type A we have, for
every n \ 1 and x ¥ M̃,

m̃(Cn(x))=m̃(CTn 5K(ri)(x)) mi(CTn 5 (K(ri+1)0K(ri))(x)) (i=i(n))

(see the definition of m̃), where

m̃(CTn 5K(ri)(x)) [ m̃(Cri−1+K(ri −ri−1)(x))=mi−1(Cri−1+K(ri −ri−1)(x)),

and

mi(CTn 5 (K(ri+1)0K(ri))(x)) [ mi(CLŒn, i (x)),

where L −n, i=1t ¥ Ln, i (t+K(ki)) (see (4.29)). Hence

−
ln m̃(Cn(x))
|Tn |

\
|K(ri−ri−1)|
|Tn |
5− ln mi−1(Cri−1+K(ri −ri−1)(x))

|K(ri−ri−1)|
6

+
|L −n, i |
|Tn |
5− ln mi(CLŒn, i (x))

|L −n, i |
6.

Now we obtain (3.3) from Corollaries 4.1 and 4.2.
For a sequence of type B we have

m̃(Cn(x)) [ m̃(Cri+P(tn − ri)(x))=mi(Cri+P(tn − ri)(x)), x ¥ M̃,

so that

−
ln m̃(Cn(x))
|Tn |

\
|P(tn− ri)|
|Tn |
5− ln mi(Cri+P(tn − ri)(x))

|P(tn− ri)|
6, x ¥ M̃.
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Due to (4.32) |P(tn− ri)|/|Tn |Q 1 as nQ., and we obtain (3.3) by apply-
ing Corollary 4.1.
At last, for a sequence of type C the sets Tn 5K(ri+1), where i=i(n),

form a sequence of type B. Therefore, as we have already seen,

lim inf
nQ.

5− ln m̃(CTn 5K(ri(n)+1)(x))
|Tn 5K(ri(n)+1)|

6 \ h(m).

When dealing with sequences of type A we proved that

lim inf
nQ.

5− ln mi+1(CTn 5 (K(ri+2)0K(ri+1))(x))
|Tn 5 (K(ri+2)0K(ri+1)|

6 \ h(m)

(here we have replaced i by i+1). It remains to observe that

−
ln m̃(Cn(x))
|Tn |

=
|Tn 5K(ri+1)|

|Tn |
5− ln mi(CTn 5K(ri+1)(x))

|Tn 5K(ri+1)|
6

+
|Tn 5 (K(ri+2)0K(ri+1))|

|Tn |
5− ln mi+1(CTn 5 (K(ri+2)0K(ri+1))(x))

|Tn 5 (K(ri+2)0K(ri+1))|
6 .

Thus Lemma 3.1 is proved.
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